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Abstract. The importance of satisfying the non-negativity condition given in the original paper
(1993J. Phys. A: Math. Gen.26 L209) in derivations and computer algorithms is noted. When
the non-negativity condition is ignored, as was done by Gómez-Vilar and Soĺe, non-physical
results may be obtained. In contrast, when the step sizes go to zero in a manner consistent
with the non-negativity condition, it can be shown that the difference equations are pointwise
consistent with the continuum equations of quantum theory.

A numerical method which used local rules of updating that required only the values of
nearest-neighbouring grid points or sites at the previous time was recently presented for
solving quantum equations [1]. The method also conserves probability and mass, and when
properly used cannot produce results that grow without bound. In contrast with other local
methods which can produce answers that grow without bound especially in regions where
the potential is large, the new method may be suitable for use with massively parallel
computers. The method is based on equations (1)–(12) of [1] and the paragraph of text
following equation (12) of [1], which gives the procedure for determining the direction of
transfer of mass between subsites and which explicitly states the essential non-negativity
condition:

‘We add the condition that the mass at any subsite cannot be less than zero.’ [1]

This non-negativity condition was easily incorporated into the computer program. There are
many ways in which this can be done. When the transfer rules (1)–(12) of [1] indicated a
transfer of mass from a subsite which was larger than the mass at that subsite, the simplest
way was to transfer no more mass than was available at the subsite. In that way the mass
or probability never became negative. It was found that the resulting error could be made
arbitrarily small by appropriately reducing the step sizes (the time step size was reduced
more rapidly than the space step size). In this way excellent agreement was found with the
exact solutions of the Schrödinger equation.

The non-negativity condition of [1] is an essential part of this method. Of course, in
derivations the range of use of any equations employing equations (1)–(12) of [1] must be
consistent with the non-negativity condition. Thus, equation (13) and (18) of [1] should not
be used when the non-negativity condition is not satisfied. In their perturbation analysis,
Gómez-Vilar and Soĺe [2] do use equations (13) and (18) of [1] when the non-negativity
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condition is not satisfied and thus it is not surprising that they derive physically meaningless
results such as that probability can go to minus infinity.

The correct method of using equation (13) of [1] in derivations requires that the non-
negativity condition be satisfied. For example, the pointwise consistency of this equation
with non-relativistic quantum theory for vanishingly small step sizes can be demonstrated
by requiring that as the time step size1t approaches zero, the spatial step size1x should
approach zero by an equation such as

1x = A(1t)1/3

whereA is a positive constant. This condition guarantees that in the limit1t → 0 the
non-negativity condition will be satisfied and thus equation (13) of [1] can be used in this
limit. In contrast Ǵomez-Vilar and Soĺe [2] imposed no such conditions on their time and
space step sizes as the step sizes approach zero and thus they violated the non-negativity
condition explicitly stated in [1]. By violating the non-negativity condition they have used
equation (13) of [1] outside its range of validity and have obtained invalid results.

To prove pointwise consistency, we note that the truncation error at subsitej at time t

for equation (13) of [1] is
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whereVj is the potential at sitej and the amplitudesaj andbj are the real and imaginary
parts of the wavefunction at sitej as defined in [1]. In the limit of small time and spatial
steps we have the Taylor series expansions
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which, when combined with the expression for the truncation error gives us
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As discussed in [1], the term in the first bracket is zero since it is the expression for the
real and imaginary amplitudes of the Schrödinger equation. Thus the truncation error of the
finite difference equation (13) of [1] is

εj = O(1t) + O((1x)2).

Thus, as the step sizes go to zero, the truncation error goes to zero. This derivation shows
that the finite difference equation (13) of [1] is pointwise consistent with the continuum
equations of non-relativistic quantum theory.

Gómez-Vilar and Soĺe also incorrectly claim without foundation thatκ going to zero
makes the method impracticable, where

κ = h̄

µ

1t

1x2
.

That this type of claim is incorrect can easily be seem by referring to the very practical and
widely used finite difference explicit method for solving the diffusion equation

∂c

∂t
= D

∂2c

∂x2
.
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In the finite difference equation for the explicit method the parameter

β = D
1t

(1x)2

occurs. Bothβ andκ have the same dependence on1t/(1x)2. If we set

1x = B(1t)1/4

whereB is a positive constant and let the time step1t go to zero, thenβ goes to zero
and it is well known and easily proven that the explicit finite difference equation becomes
pointwise consistent with the diffusion equation.

In summary, in both derivations and computer algorithms it is essential that the non-
negativity condition given in the original paper [1] be satisfied. This was not done by
Gómez-Vilar and Soĺe [2], and they obtained results that are non-physical. In contrast,
when care is taken to satisfy the non-negativity condition, it can be shown that the difference
equations are pointwise consistent with the continuum equations of quantum theory.
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